Bifurcation analysis of a predator-prey system with density dependent disease recovery

نویسندگان

چکیده

The center manifold is an invariant that plays a crucial role in the bifurcation analysis of dynamical systems. existence theorem assures local submanifold state space system around non-hyperbolic equilibrium point. Center theory essential reduction different scenarios to their normal forms. Our study focuses on predator-prey interactive with density-dependent growth predators subject contagious disease. disease assumed be horizontally transmitted, and rate recovery infected predator density-dependent. At trivial (zero) equilibrium, calculated whose behaviour similar original system. Further, using manifolds, form Hopf point determined fromwhich criticality can deduced. Finally, numerical simulations are performed biologically plausible parameters substantiate analytical findings. Using continuation methods we detect Generalized Zero-Hopf points. We discuss coefficients, compute two-parameter unfoldings relate these results mathematical codimension two bifurcations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

Stability analysis of a fractional order prey-predator system with nonmonotonic functional response

In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...

متن کامل

The Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population

A mathematical model describing the dynamics  of a  delayed  stage structure prey - predator  system  with  prey  refuge  is  considered.  The  existence,  uniqueness  and bounded- ness  of  the  solution  are  discussed.    All  the  feasibl e  equilibrium  points  are determined.  The   stability  analysis  of  them  are  investigated.  By  employ ing  the time delay as the bifurcation parame...

متن کامل

Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure

A ratio-dependent predator–prey model with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when s = s0. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2220897k